Chebyshev polynomials and inequalities for Kleinian groups

نویسندگان

چکیده

The principal character of a representation the free group rank two into PSL(2, C) is triple complex numbers that determines an irreducible uniquely up to conjugacy. It central problem in geometry discrete groups and low dimensional topology determine when such represents not virtually abelian, Kleinian group. A classical necessary condition J{\o}rgensen's inequality. Here we use certainly shifted Chebyshev polynomials trace identities new families inequalities, some which are best possible. these also shows how can identify important subgroups from itself.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mating Kleinian Groups Isomorphic to C2 ∗ C5 with Quadratic Polynomials

Given a quadratic polynomial q : Ĉ→ Ĉ and a representation G : Ĉ→ Ĉ of C2 ∗C5 in PSL(2,C) satisfying certain conditions, we will construct a 4 : 4 holomorphic correspondence on the sphere (given by a polynomial relation p(z,w)) that mates the two actions: The sphere will be partitioned into two completely invariant sets Ω and Λ. The set Λ consists of the disjoint union of two sets, Λ+ and Λ−, e...

متن کامل

Bounded Geometry for Kleinian Groups

We show that a Kleinian surface group, or hyperbolic 3manifold with a cusp-preserving homotopy-equivalence to a surface, has bounded geometry if and only if there is an upper bound on an associated collection of coefficients that depend only on its end invariants. Bounded geometry is a positive lower bound on the lengths of closed geodesics. When the surface is a once-punctured torus, the coeff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Contemporary Mathematics

سال: 2021

ISSN: ['0219-1997', '1793-6683']

DOI: https://doi.org/10.1142/s0219199721501029